elimold brand logo
62d298bba1d30

The most promising additive manufacturing materials for 3D printing in the future

Previously, Zenglong New Material Technology introduced the current development status and R&D trends of commonly used additive manufacturing (3D printing) materials in detail through two articles, “Common Materials and Forming Processes for Additive Manufacturing (3D Printing)” and “R&D Trends of Common Materials for Additive Manufacturing (3D Printing)”, and in this article, we will talk about the most cutting-edge materials with the most development potential worldwide.

62d29a7d61b42
3d printed hip bone. 3d printed implants on white background.

Micro and nano additive manufacturing (3D printing) materials

Micro and nano additive manufacturing is the technology of manufacturing millimeter, micron and nanometer parts according to the principle of additive manufacturing (3D printing), and the forming process of micro and nano additive manufacturing mainly includes micro and stereolithography, polymerization micro and nano 3D printing, aerosol jet 3D printing, direct ink writing (DIW), electrohydrodynamic jet printing, micro-selective laser sintering (μSLS), electrochemical manufacturing (EFAB), electric field driven jet deposition micro and nano 3D printing, etc.

The materials used for micro-nano additive manufacturing (3D printing) are mainly high-precision molecular materials, metal nanomaterials for micro-laser sintering, nano-conductive materials (nano-silver paste, graphene ink), nano-ceramic powder, aerosol materials, degradable biomaterials, smart materials, etc.

1、High-precision molecular materials

A high-precision negative resin material developed by NanoScribe, Germany, has good electrical properties, mechanical properties and thermal stability, with a certain degree of water resistance and low coefficient of thermal expansion, which can realize the printing of objects as small as 160nm in size. The surface cells designed by Professor Li Xiaoyan of Tsinghua University using the concept of force material science can prepare polymeric micron dot matrix materials based on very small surfaces by stereolithography, and obtain pyrolytic carbon nanodot matrix materials by high-temperature pyrolysis, the characteristic size of which varies from a few hundred microns to several hundred nanometers.

2、Metallic nanomaterials

Metal nanomaterials include nanoparticle ink, ionic solutions, molten metal droplets, these materials can be manufactured with a resolution <10μm metal structure, the current German 3D MicroPrint company can produce two sizes less than 5μm stainless steel powder material can be used in the laser forming process, the U.S. Microfabrica company can produce four kinds of layered thickness in 5μm, the surface roughness at 0.8μm, which can be used for batch production of micro-scale metal parts.

The minimum feature size of a metal additive manufacturing (3D printing) part is influenced by the size of the material, which can be supplied in powder, wire, sheet or inkjet form. Applicable to powder forming process, such as micro-selective laser melting (SLM) and laser engineering net forming process, can print 0.3-10μm metal powder particles, the final formed parts can be limited to the minimum feature size of about 20μm size.

3、Conductive materials

For conductive micro-nano materials are nano-silver ink and graphene materials, currently, by the U.S. Nano Dimension company developed nano-silver conductive ink material, the size can reach 10 to 100nm, silver content between 20% and 70%, Poland XTPL company developed a “ultra-precision deposition” XTPL, a Polish company, has developed an “ultra-precision deposition” micro-additive manufacturing process that enables the printing of molded parts as small as 1 to 50 μm, which is used in the repair of circuit defects in smart glass displays.

Graphene is recognized as the world’s thinnest, strongest and most flexible material, with superb thermal and electrical conductivity and cheaper than silver ink, the UK’s Haydale Graphene Company is currently researching graphene aerogel lightweight materials and graphene-reinforced PLA fiber materials for 3D printing.

4、Bio-micro-nano materials

Bio-micro-nano additive manufacturing (3D printing) materials are mainly some synthetic biocompatible and degradable polymer materials and natural biomaterials, such as polylactic acid, polycaprolactone, levopolylactic acid, hydrogels, nanoceramics (medical grade), which can achieve micro-scale printing accuracy. A recent publication in the journal Bioactive Materials titled “Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivoosseointegration by promoting angiogenesis and osteogenesis,” describes the use of magnesium ion-chelated polydopamine (PDA) coatings, a biomicroscopic material that improves the hydrophilicity of PEEK-printed skeletal scaffolds, promotes cell proliferation and adhesion, and aids in bone cell differentiation. A bioconcrete ink described in the journal Nature Communications, “In situ 3D bioprinting with bioconcrete bioink”, in which cells are attached to a microgel substrate by electrojet, can repair tissue defects by in situ 3D printing.

5、4D printing of micro and nano smart materials

Micro-scale 4D printing is also one of the current research hotspots in the field of additive manufacturing. The so-called “4D printing” is the automatic deformation of materials into the designed shape, therefore, the materials in this field are mainly various smart materials, including deformation materials, shape memory polymers, shape memory alloys, stimulus response materials, hydrogels piezoelectric materials, etc.

These are the various materials in the field of micro and nano additive manufacturing, in addition to some new materials suitable for conventional size additive manufacturing (3D printing).

environmentally friendly materials

In the field of polymer materials, some researchers are working on developing bio-based materials or adding modifications to other materials to make recyclable or reusable materials, for example, UBQ Materials and Plastics App have collaborated to make filamentary materials for additive manufacturing (3D printing) from technical waste produced by the company. 100% biodegradable NonOilen material.

Cemented Carbide

Cemented Carbide is a consistent and extremely hard material formed by bonding carbon and carbide particles to composite materials with a metallic adhesive through adhesive spray 3D printing technology. Cemented Carbide can withstand the tremendous forces of grinding or drilling and can be used to produce wearable parts and tools through 3D printing technology, as well as to produce shaped parts or internal cooling tunnels.

Fourth, concrete materials

Concrete materials 3D printing is achieved through the extrusion process, the extruded material directly accumulated on the lower material, in the absence of a mold for support to maintain the shape, the need to consider the rheology of the material, research has shown that the addition of materials such as cellulose ether, concave clay, fly ash, silica fume and water reducing agents can effectively improve the rheology of concrete materials, and currently, according to the different materials added to these, the formation of silicate cement system, sulfo-aluminate cement system, phosphate cement system, geopolymer system, and magnesium alumina cement system.

Leave a Comment

Your email address will not be published.